Sciences orientation logicielle 2

Mathématiques Discrètes

Chapitre 2

Théorie des jeux

Historique

- 1913 Ernest Zermelo propose le premier théorème de la théorie des jeux : le jeu d'échecs est strictement déterminé,
- 1928 John von Neumann démontre le théorème du minimax,
- 1944 John von Neumann & Oskar Morgenstern publient «Theroy of Games and Economic Behavior»,
- 1950-1953 John Nash décrit l'équilibre de Nash (prix Nobel en 1994),
- Au total plus d'une dizaine de prix Nobel d'économie ont été discernés à des travaux sur la théorie des jeux.

Les hypothèses de rationalité

- Les humains sont des êtres rationnels,
- Un humain cherche toujours la meilleure alternative dans un ensemble de choix.

Objectifs de ces hypothèses :

- 1. Réduction de l'ensemble des possibilités,
- 2. Prédiction des choix.

Théorie de l'utilité

- En se basant sur les hypothèses de rationalité, la théorie de l'utilité suppose qu'un individu cherche à maximiser son utilité,
- La fonction d'utilité peut ne pas être linéaire (elle l'est rarement),
- Il s'agit d'une quantification des préférences d'un individu (matérielle et / ou non).

Théorie de jeux

Objectif:

- étudier mathématiquement la meilleure stratégie selon des conditions données, afin d'optimiser le résultat,
- Suppose que les interactions humaines peuvent être modélisées et quantifiées.

Motivations

- Tout individu «intelligent» est confronté aux prises de décisions,
- Permet une analyse rationnelle d'une situation et la recherche d'une alternative acceptable selon les circonstances,
- Outil indispensable pour la modélisation de prise de décision stratégique (jeu contre un adversaire, jeu contre la «nature»),
- Fournit un outil d'analyse structuré pour mesurer la valeur de l'information.

Types de jeux

- Jeu à mouvements (coups) séquentiels ou simultanés,
- Jeu à partie unique ou itératifs,
- Jeu à somme nulle ou non-nulle,
- Jeu avec information parfaite ou partielle,
- Jeu purement déterministe ou aléatoire,
- Jeu coopératif ou compétitif (ou conflictuel).

Jeux à somme nulle

- La somme des gains («payoff») est constante au cours du jeu,
- Deux parties adverses en compétition,
- Toute information est utile à un joueur.

Jeux à somme non-nulle

- La somme des gains («payoff») varie au cours du jeu,
- Deux parties adverses qui peuvent soit coopérer ou être en compétition,
- Toute information peut nuire à un joueur.

Jeux à information parfaite

- L'information sur les coups de l'adversaire sont connus à l'avance,
- Deux parties adverses en compétition,
- Toute information est utile à un joueur.

Jeux à information partielle

- L'information partielle ou nulle concernant les décisions de l'adversaire,
- La partialité des informations peut diminuer en cas de répétition du jeu.

Exercice:

- Donnez un exemple de jeu déterministe à information parfaite,
- Donnez un exemple de jeu non-déterministe à information parfaite,
- Donnez un exemple de jeu déterministe à information partielle,
- Donnez un exemple de jeu non-déterministe à information partielle.

Exercice - solutions

	Déterministe	Non- déterministe
Information parfaite	Echecs, Dames, Puissance 4,	Monopoly, Jeu de l'Oie,
Information partielle	Bataille navale	Poker

Dilemme du prisonnier (Tucker, 1950)

- Deux prisonniers (joueurs),
- Aucun transfert d'information entre les joueurs,
- Deux choix sont proposés à chaque joueur :
 - 1. Dénoncer l'autre,
 - 2. Ne pas dénoncer.
- Les possibilités sont :
 - 1. Si les deux joueurs dénoncent l'autre, les deux sont condamnés à 10 ans de prison,
 - 2. Si aucun joueur ne dénonce l'autre, les deux sont condamnés à 1 an de prison,
 - 3. Si un seul des deux dénonce l'autre, le dénoncé écope de 20 ans de prison et le dénonciateur est libéré sans peine.

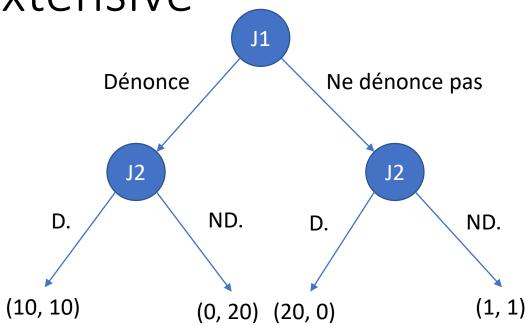
Question

De quel type de jeu s'agit-il ?

Question

- L'information est imparfaite => jeu à information partielle
- Jeu à somme non-nulle (les différentes alternatives ne sont pas équivalentes).

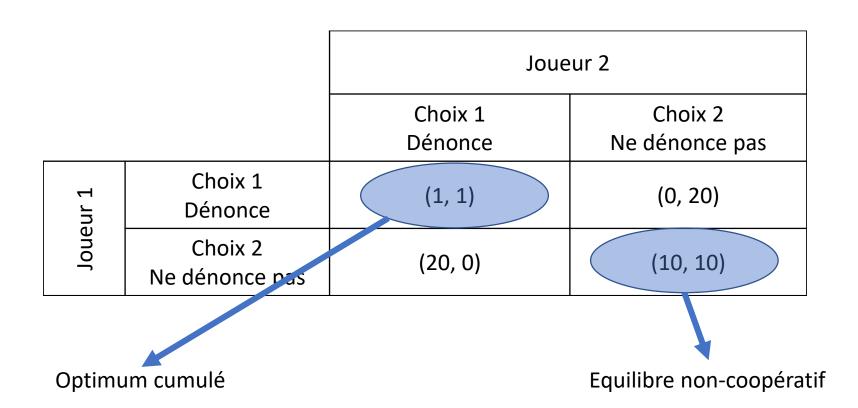
Représentation par arborescence ou extensive



Représentation matricielle

		Joueur 2	
		Choix 1 Choix 2 Dénonce Ne dénonce pas	
ur 1	Choix 1 Dénonce	(10, 10)	(0, 20)
Joueur 1	Choix 2 Ne dénonce pas	(20, 0)	(1, 1)

Représentation matricielle



Exercice – Problème de location de skis

- A chaque journée de ski, le joueur est confronté au choix de louer les skis (10.-/jour) ou de les acheter (500.-),
- La location n'est valable qu'une seule journée, alors que l'achat est définitif,
- Nous n'avons, a priori, aucune information sur le nombre de jours que la station sera ouverte durant la saison.
- Variante : on connaît le nombre MAXIMUM de jours ouverts.

Exercice – Problème de location de skis

- De quel type de jeu s'agit-il ?
- Listez les stratégies possibles pour les 5 premiers jours.
- Représentez les stratégies sous forme d'arbre et de matrice.

Equilibre de Nash

Exemple de jeu itératif à information parfait où les joueurs 1 et 2 cherchent à maximiser leur utilité.

Le joueur à décider en premier est tiré au hasard.

		Joueur 2		
		Choix U	Choix V	
Joueur 1	Choix X	(3, 9)	(1, 7)	
Joue	Choix Y	(0, 0)	(2, 8)	

Equilibre de Nash

(X,V) et (Y,U) ne sont pas réalisables – pourquoi?

Les choix (X,U) et (Y,V) sont appelés «*Equilibres de Nash*».

(X,U) étant la meilleure solution à tout égard pour A et B, on l'appelle «*Optimum de Paretho*».

		Joueur 2	
		Choix U	Choix V
ur 1	Choix X	(3, 9)	(1, 7)
Joueur 1	Choix Y	(0, 0)	(2, 8)

Equilibre de Nash

Exemple de jeu itératif à information parfait où les joueurs A et B cherchent à maximiser leur utilité.

Le joueur à décider en premier est tiré au hasard.

		Joueur B		
		Choix U	Choix V	Choix W
A	Choix X	(3, 9)	(1, 8)	(1, 7)
Joueur A	Choix Y	(0, 0)	(2, 1)	(2, 3)
) 	Choix Z	(2, 6)	(1, 9)	(1, 10)

Quels sont les issues possibles?

Etant dans un jeu déterministe, certaines situations ne se présenteront jamais...

Ex: si B choisit V, U A choisira Y pour maximiser son utilité. Inversément, si A choisit X, Y choisira U.

		Joueur B		
		Choix U	Choix V	Choix W
Α	Choix X	(3, 9)	(1)/8)	(1, 7)
Joueur A	Choix Y	(0, 0)	(2, 1)	(2, 3)
JC	Choix Z	(2, 6)	(1, 9)	(1, 10)

Quels sont les issues possibles ?

Toutes les solutions suivantes ne seront jamais atteintes si A joue en premier.

		Joueur B		
		Choix U	Choix V	Choix W
4	Choix X	(3, 9)	(1,8)	
Joueur A	Choix Y	(0,0)	(2,1)	(2, 3)
) 	Choix Z	(2,6)	(1,9)	(1, 10)

Quels sont les issues possibles ?

Toutes les solutions suivantes ne seront jamais atteintes si B joue en premier.

		Joueur B		
		Choix U	Choix V	Choix W
4	Choix X	(3, 9)	(1)/8	
Joueur A	Choix Y		(2, 1)	(2, 3)
) 	Choix Z	(2,6)		(1,10)

Quels sont les issues possibles ?

Les issues possibles sont les issues qui ne seront jamais choisies, que ce soit A ou B qui choisisse en premier.

		Joueur B		
		Choix U	Choix V	Choix W
4	Choix X	(3, 9)	(1, 8)	(1, 7)
Joueur A	Choix Y	(0, 0)	(2, 1)	(2, 3)
Jc	Choix Z	(2, 6)	(1, 9)	(1, 10)

Formalisation

- $N = \{1, 2, ..., n\}$, un ensemble de *joueurs*,
- $S_i = \{s_1, \dots, s_{n_1}\}$, un ensemble de **stratégies** (ou choix) pour le joueur $i \in N$,
- $\mu_i: S_1 \times S_2 \times \cdots \times S_n \to \mathbb{R}$ une *fonction d'utilité* associant une valeur réelle à chaque stratégie du joueur i.

Notations supplémentaires

- $s = \{s_1, ..., s_n\}$ dénote un *profile de stratégies* pour tous les joueurs, avec $s_i \in S_i$,
- $s_{-i} = \{s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n\}$, le profile des stratégies autres que celle du joueur i,
- $S = S_1 \times S_2 \times \cdots \times S_n$ dénote l'espace des stratégies de tous les joueurs,
- Lorsque l'on s'intéresse à l'utilité d'un seul joueur, on notera

$$\mu_i(s_i, s_{-i}) = \mu_i(s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n)$$

Domination faible/forte

• Une stratégie s_i est dite dominée (faiblement) s'il existe une stratégie s'_i telle que

$$\mu_i(s_i, s_{-i}) \le \mu_i(s'_i, s_{-i})$$

La domination est forte (ou stricte) si

$$\mu_i(s_i, s_{-i}) < \mu_i(s'_i, s_{-i})$$

Domination faible/forte

		Joueur 2	
		s_2 s'_2	
ur 1	s_1	(4, 2)	(3, 1)
Joueur 1	s'_1	(2, 5)	(9, 0)

$$\mu_2(s_2, s_{-2}) < \mu_2(s'_2, s_{-2})$$

Elimination des stratégies dominées

		Joueur 2		
		Choix U	Choix V	Choix W
1	Choix X	(3, 6)	(7, 1)	(4, 8)
Jonenr	Choix Y	(5, 1)	(8, 2)	(6, 1)
<u> </u>	Choix Z	(6, 0)	(6, 2)	(3, 2)

Elimination des stratégies dominées

		Joueur 2		
		Choix U	Choix V	Choix W
1	Choix X	(3, 6)	(7, 1)	(4, 8)
Jonenr	Choix Y	(5, 1)	(8, 2)	(6, 1)
) 	Choix Z	(6, 0)	(6, 2)	(3, 2)

Elimination des stratégies dominées

		Joueur 2		
		Choix U	Choix V	Choix W
Joueur 1	Choix X	(3, 6)	(7, 1)	(4, 8)
	Choix Y	(5, 1)	(8, 2)	(6, 1)
	Choix Z	(6, 0)	(6, 2)	(3, 2)

Elimination des stratégies dominées

		Choix U	Choix V	Choix W
1	Choix X	(3, 6)	(7, 1)	(4, 8)
Joueur .	Choix Y	(5, 1)	(8, 2)	(6, 1)
Jc	Choix Z	(6, 0)	(6, 2)	(3, 2)

Elimination des stratégies dominées

		Joueur 2		
		Choix U	Choix V	Choix W
Joueur 1	Choix X	(3, 6)	(7, 1)	(4, 8)
	Choix Y	(5, 1)	(8, 2)	(6, 1)
)r	Choix Z	(6, 0)	(6, 2)	(3, 2)

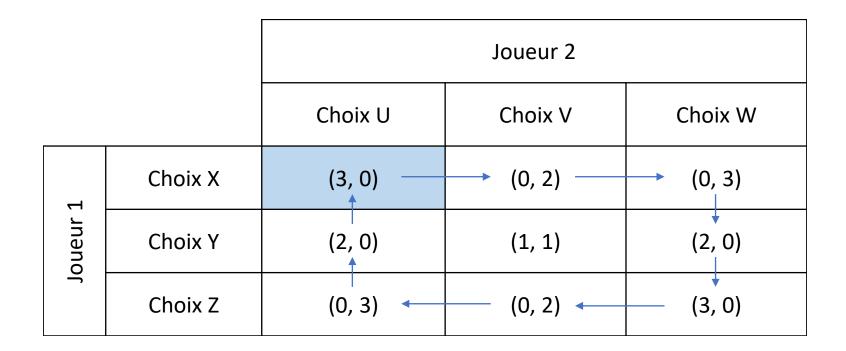
Elimination de stratégies dominées

- Un jeu est dit résolvable par élimination itérative des stratégies dominées si l'élimination successive des stratégies (fortement) dominées aboutit à un état unique,
- Si le jeu est résolvable, l'état final ne dépend pas de l'ordre choisi pour l'élimination en cas de domination stricte,
- L'état peut varier en cas de domination faible,
- Problème tous les jeux ne sont pas résolvables!

Choix séquentiels

		Joueur 2		
		Choix U	Choix V	Choix W
1	Choix X	(3, 0)	(0, 2)	(0, 3)
Joueur 1	Choix Y	(2, 0)	(1, 1)	(2, 0)
νſ	Choix Z	(0, 3)	(0, 2)	(3, 0)

Choix séquentiel => cycles!



Avec un autre choix initial

		Joueur 2		
	Choix U Choix V Choix		Choix W	
1	Choix X	(3, 0)	(0, 2)	(0, 3)
Joueur (Choix Y	(2, 0)	(1, 1)	(2, 0)
	Choix Z	(0, 3)	(0, 2)	(3, 0)

Aucun des deux joueurs ne va dévier du choix initial

		Joueur 2		
		Choix U	Choix V	Choix W
Joueur 1	Choix X	(3, 0)	(0, 2)	(0, 3)
	Choix Y	(2, 0)	(1, 1)	(2, 0)
) 	Choix Z	(0, 3)	(0, 2)	(3, 0)

Equilibre de Nashe - formellement

- Un équilibre de Nashe est une situation pour laquelle aucun joueur ne dévie de sa stratégie, étant le choix des autres fixés
- Formellement, on dit qu'un profile de stratégie $s^* = \{s_1^*, \dots, s_n^*\}$ est un équilibre de Nashe si, pour tout $i = 1, \dots n$ et toute stratégie $s' \in S_i$

$$\mu_i(s_i^*, s_{-i}^*) \ge \mu_i(s_i', s_{-i}^*)$$

Equilibre de Nashe

Pour i = 1, $s_1^* = Y$, et les alternatives sont

$$\mu_1(s_1^*,s_{-1}^*) = \mu_1(s_1^*,s_2^*) = \mu_1(Y,V) = 1$$
 Les alternatives sont $\mu_1(X,V) = 0$ et $\mu_1(Z,V) = 0$

		Joueur 2		
		Choix U	Choix V	Choix W
1	Choix X	(3, 0)	(0, 2)	(0, 3)
Joueur 1	Choix Y	(2, 0)	(1, 1)	(2, 0)
JC	Choix Z	(0, 3)	(0, 2)	(3, 0)

Equilibre de Nashe

Pour i = 2, $s_2^* = V$, et les alternatives sont

$$\mu_2(s_2^*, s_{-2}^*) = \mu_2(s_1^*, s_2^*) = \mu_2(Y, V) = 1$$

Les alternatives sont

$$\mu_2(Y, U) = 0 < 1 = \mu_2(s^*) = 1$$

 $\mu_2(Y, W) = 0 < 1 = \mu_2(s^*) = 1$

Etant le cas pour les 2 joueurs, s^* est un équilibre de Nashe.

Fonction de meilleure réponse

• La fonction de meilleure réponse B_i associe à chaque combinaison des stratégies des autres joueurs s_{-i} les stratégies s_i^* qui maximisent son utilité (elle n'est pas forcément unique !)

$$B_i(s_{-i}) = \{ s_i \in S_i \mid \mu_i(s_i, s_{-i}) \ge \mu_i(s_i', s_{-i}), \forall s_i' \in S_i \}$$

Equilibre de Nash - redéfini

• Pour un équilibre de Nash s^* est tel que

$$s_i^* \in B_i \ (s_{-i}^*), \forall i = 1, ..., n$$

Propriétés

- Un profile (unique) obtenu par élimination itérative des stratégies strictement dominées est un équilibre de Nash, et c'est le seul équilibre du jeu,
- La réciproque n'est <u>pas vraie</u> (il y a 2 équilibres !)

		Joueur B	
		Choix U	Choix V
ur A	Choix X	(3, 9)	(1, 7)
Joueur A	Choix Y	(0, 0)	(2, 8)

Propriétés - suite

- Un jeu peu ne pas avoir d'équilibre du tout,
- En cas d'équilibres multiples, les équilibres s^* et s'^* sont interchangeables si pour tout $i=1,\ldots,n$ $(s_i^*,s_{-i}^{\prime*})$ et $(s_i^{\prime*},s_{-i}^*)$ sont aussi des équilibres de Nash
- Les deux équilibres sont dit *équivalents* si pour tout i = 1, ..., n

$$\mu_i(s^*) = \mu_i(s'^*)$$

Domination au sens de Paretho

• Un profile s domine un profile s' si

1.
$$\mu_i(s_i, s_{-i}) \ge \mu_i(s'_i, s'_{-i}) \ \forall i = 1, ..., n, \text{ et}$$

2.
$$\exists j \in \{1, ..., n\} \mid \mu_j(s_j, s_{-j}) > \mu_j(s'_j, s'_{-j}).$$

Autrement dit, le profile est égal ou meilleur pour tous les joueurs, et il existe (au moins !) un joueur pour lequel la stratégie est strictement meilleure.

Domination stricte au sens de Paretho

• Un profile s domine strictement un profile s' si $\mu_i(s_i, s_{-i}) > \mu_i(s'_i, s'_{-i}) \ \forall i = 1, ..., n.$

Niveau de sécurité

• Le *niveau de sécurité* d'une stratégie s_i pour le joueur i correspond au gain minimum que le joueur peut obtenir, quel que soit le choix des autres joueurs

$$\min_{S_{-i}} \mu_i \left(s_i, s_{-i} \right)$$

• Le niveau de sécurité du joueur i est le niveau de sécurité maximal de toutes les stratégies $s_i \in S_i$.

Jeux à stratégie aléatoire

		Joueur 2	
		x	у
ur 1	x	(2, 1)	(0, 0)
Jonenr	у	(0, 0)	(1, 2)

Le niveau de sécurité du joueur 1 est 0, en effet

$$\min_{s_{-1}} \mu_1(s_1, s_{-1}) = \mu_1(x, y) = \mu_1(y, x) = 0$$

Jeux à stratégie aléatoire

- Supposons maintenant que le joueur 1 choisisse aléatoirement avec une probabilité $\frac{1}{2}$ ente x et y.
- L'utilité du joueur devient alors une espérance :

$$\mu_1\left(<\left(x,\frac{1}{2}\right),\left(y,\frac{1}{2}\right)>,x\right)=\frac{1}{2}\cdot 2+\frac{1}{2}\cdot 0=1$$

$$\mu_1\left(<\left(x,\frac{1}{2}\right),\left(y,\frac{1}{2}\right)>,y\right)=\frac{1}{2}\cdot 0+\frac{1}{2}\cdot 1=\frac{1}{2}$$

Jeux à stratégie aléatoire

• Le niveau de sécurité du joueur 1 est dont $\frac{1}{2}$!

Stratégies pures vs mixtes

- Les stratégies pures sont des choix qui se présentent aux joueurs de manière explicite et déterministes (p.ex. accepter/rejeter une offre, dénoncer/ne pas dénoncer, ...)
- Les stratégies mixtes sont, quant à elles, des distributions de probabilité sur un ensemble de stratégies pures

Stratégies mixtes - exemple connu

- Un lancé de dé est une stratégie mixte,
- Sa distribution de probabilité est, pour chaque joueur i

$$\sigma_i(k) = \frac{1}{6}, \forall i = 1, \dots 6$$

(pour autant que les dés ne soient pas pipés!)

Stratégies mixtes - notations

- Un profile de stratégies mixte pour le joueur i est noté σ_i ,
- Σ_i est l'ensemble des stratégies de i,
- $p_i(s_k)$ est la probabilité associée à la stratégie pure s_k selon la distribution σ_i ,
- L'utilité de σ_i est calculée par

$$\mu_i(\sigma_i) = \sum_{s \in S_i} \left(\prod_{j=1}^{n_i} p_j(s_j) \right) \mu_i(s)$$

Stratégies mixtes – Equilibre de Nash

• Un équilibre de Nash en stratégies mixtes $\sigma^* \in \Sigma$ est un profile tel que

$$\mu_i(\sigma_i^*, \sigma_{-i}^*) \ge \mu_i(\sigma_i, \sigma_{-i}^*), \forall i = 1, ..., n, \forall \sigma_i \in \Sigma_i$$

Propriétés

• $\sigma^* \in \Sigma$ est un équilibre de Nash si et seulement si

$$\mu_i(\sigma_i^*, \sigma_{-i}^*) \ge \mu_i(s_i, \sigma_{-i}^*), \forall i = 1, \dots n, \forall s_i \in S_i$$

 <u>Théorème de Nash (1950)</u>: Tout jeu sous forme stratégique a un équilibre de Nash en stratégies mixtes.

Exemple revisité

		Joueur 2	
		x	у
ur 1	x	(2, 1)	(0, 0)
Joueur 1	y	(0, 0)	(1, 2)

$$p_1(x) = \pi$$

$$p_1(y) = 1 - \pi$$

Soit π la probabilité que le joueur 1 choisisse x. La probabilité qu'il joue y est donc $1 - \pi$.

Exemple revisité – Niveau de sécurité

Le niveau de sécurité se calcule comme suit

$$\mu_1(<(x,\pi),(y,1-\pi)>,x) = \pi \cdot 2 + (1-\pi) \cdot 0 = 2\pi$$

 $\mu_1(<(x,\pi),(y,1-\pi)>,y) = \pi \cdot 0 + (1-\pi) \cdot 1 = 1-\pi$

Le niveau de sécurité est donné par

$$\min(2\pi, 1-\pi)$$

Le niveau de sécurité dépend donc de la valeur de π .

Exemple revisité – suite

Le niveau de sécurité étant

$$min(2\pi, 1-\pi)$$

Quel est le niveau de sécurité maximum pour le joueur ?

Il s'agit de la formule suivante :

$$\max_{0 \le \pi \le 1} \{ \min(2\pi, 1 - \pi) \} = \frac{1}{3}$$

C'est la solution à l'équation suivante :

$$2\pi = 1 - \pi$$
.

Exemple revisité – suite I

Quelle conséquence si un joueur a connaissance de la stratégie de l'autre ?

Soit $p_2(x) = \pi_2$, et donc $p_2(y) = 1 - \pi_2$, alors l'utilité du joueur 1 devient:

$$\mu_1(x, <(x, \pi_2), (y, 1 - \pi_2) >) = \pi_2 \cdot 2 + (1 - \pi_2) \cdot 0 = 2\pi_2$$

$$\mu_1(y, <(x, \pi_2), (y, 1 - \pi_2) >) = \pi_2 \cdot 0 + (1 - \pi_2) \cdot 1 = 1 - \pi_2$$

Exemple revisité – suite II

Donc

- Si $2\pi_2 > 1 2\pi_2$ ($\pi_2 > 1/3$), la meilleure réponse du joueur 1 est de jouer x,
- Si $2\pi_2 < 1 2\pi_2$ ($\pi_2 < 1/3$), la meilleure réponse du joueur 1 est de jouer y,
- Si $2\pi_2 = 1 2\pi_2$ ($\pi_2 = 1/3$), le joueur 1 peut choisir l'une ou l'autre des combinaisons, ou n'importe quelle combinaison aléatoire des deux !

Exemple revisité – suite III

Pour le joueur 2, savoir la stratégie du joueur 1 ($p_1(x) = \pi_1$)

$$\mu_2(<(x,\pi_1),(y,1-\pi_1),x>) = \pi_1 \cdot 1 + (1-\pi_1) \cdot 0 = \pi_1$$

$$\mu_2(<(x,\pi_1),(y,1-\pi_1)>) = \pi_1 \cdot 0 + (1-\pi_1) \cdot 2 = 2(1-\pi_1)$$

Donc:

- Si $\pi_1 > 2/3$, la meilleure réponse du joueur 2 est de jouer x,
- Si $\pi_1 < 2/3$), la meilleure réponse du joueur 2 est de jouer y,
- Si $\pi_1=2/3$, le joueur 2 peut choisir l'une ou l'autre des combinaisons, ou n'importe quelle combinaison aléatoire des deux !

Gains en stratégies mixtes

Le gain de chaque joueur en stratégie mixte σ devient

$$\mu_1(\sigma) = \pi_1 \pi_2 2 + \pi_1 (1 - \pi_2) 0 + (1 - \pi_1) \pi_2 0 + (1 - \pi_1) (1 - \pi_2) 1$$
$$= 3\pi_1 \pi_2 - \pi_1 - \pi_2 + 1$$

$$\mu_2(\sigma) = \pi_1 \pi_2 1 + \pi_1 (1 - \pi_2) 0 + (1 - \pi_1) \pi_2 0 + (1 - \pi_1) (1 - \pi_2) 2$$
$$= 3\pi_1 \pi_2 - 2\pi_1 - 2\pi_2 + 2$$

Gains en stratégies mixtes

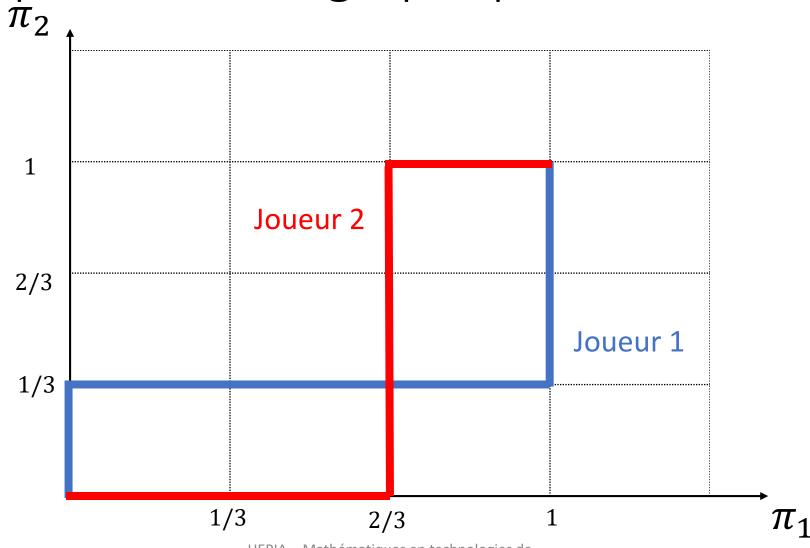
Le profile $\sigma^* = (<(x,\frac{2}{3}),(y,\frac{1}{3})>,<(x,\frac{1}{3}),(y,\frac{2}{3})>$ est un équilibre de Nash en stratégie mixte.

Les gains sont :

$$\mu_1(\sigma^*) = 3\pi_1\pi_2 - \pi_1 - \pi_2 + 1 = 2/3$$

$$\mu_2(\sigma^*) = 3\pi_1\pi_2 - 2\pi_1 - 2\pi_2 + 2 = 2/3$$

Représentation graphique



HEPIA – Mathématiques en technologies de l'information, 2e semestre 2017-2018